Almost regular sequences and the monomial conjecture
نویسندگان
چکیده
منابع مشابه
Almost Regular Sequences and the Monomial Conjecture
This conjecture has assumed a central role since it has a very simple statement and it implies several other important conjectures, notably the Canonical Element Conjecture, for rings of positive or mixed characteristic. In fact, when this conjecture was first announced, it had numerous further consequences, some of which, such as the New Intersection Conjecture, were proved later by different ...
متن کاملThe Monomial Conjecture and Order Ideals
In this article first we prove that a special case of the order ideal conjecture, originating from the work of Evans and Griffith in equicharacteristic, implies the Monomial conjecture due to M. Hochster. We derive a necessary and sufficient condition for the validity of this special case in terms certain Syzygis of canonical modules of normal domains possessing free summands. We also prove som...
متن کاملNote on regular and coregular sequences
Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.
متن کاملOn the Spaces of $lambda _{r}$-almost Convergent and $lambda _{r}$-almost Bounded Sequences
The aim of the present work is to introduce the concept of $lambda _{r}$-almost convergence of sequences. We define the spaces $fleft( lambda _{r}right) $ and $f_{0}left( lambda _{r}right) $ of $ lambda _{r}$-almost convergent and $lambda _{r}$-almost null sequences. We investigate some inclusion relations concerning those spaces with examples and we determine the $beta $- and $gamma $-duals of...
متن کاملMonomial bases related to the n! conjecture
Let μ = (μ1 ≥ μ2 ≥ · · · ≥ μk > 0) be a partition of n. We shall identify μ with its Ferrers diagram (using the French notation). To each cell s of the Ferrers diagram, we associate its coordinates (i, j), where i is the height of s and j the position of s in its row. The pairs (i − 1, j − 1) occurring while s describes μ will be briefly referred to as the set of the biexponents of μ. Now let (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2008
ISSN: 0026-2285
DOI: 10.1307/mmj/1220879428